

PIET HOOGKAMER, SVEN DANIEL SCHMITZ

Multivariate Similarity Testing of Dissolution Curves

15 | March | 18

Abbott Established Pharmaceuticals

Multivariate Similarity Testing of Dissolution Curves - agenda

What is dissolution testing and why is it important?

Comparing profiles

Guidance

Approaches fit factor f2 Multivariate analysis

JMP and multivariate testing

Multivariate Similarity Testing of Dissolution Curves - what is dissolution testing

Surrogate measure of in-vivo dissolution

in-vivo dissolution rate may affect drug *bio-availability bio-availability* may affect PK (*blood levels*) *blood levels* may affect safety and efficacy

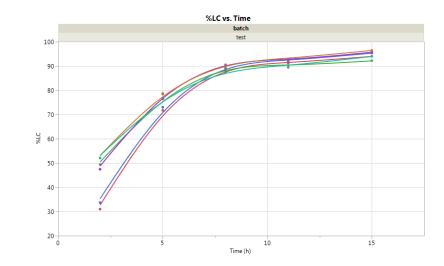
Compendial requirement for most solid oral dosage forms

Need to show "equivalence" for change in product / process / method / site to obtain a bio-waiver

Multivariate testing of the Similarity of Dissolution Curves - what is dissolution testing

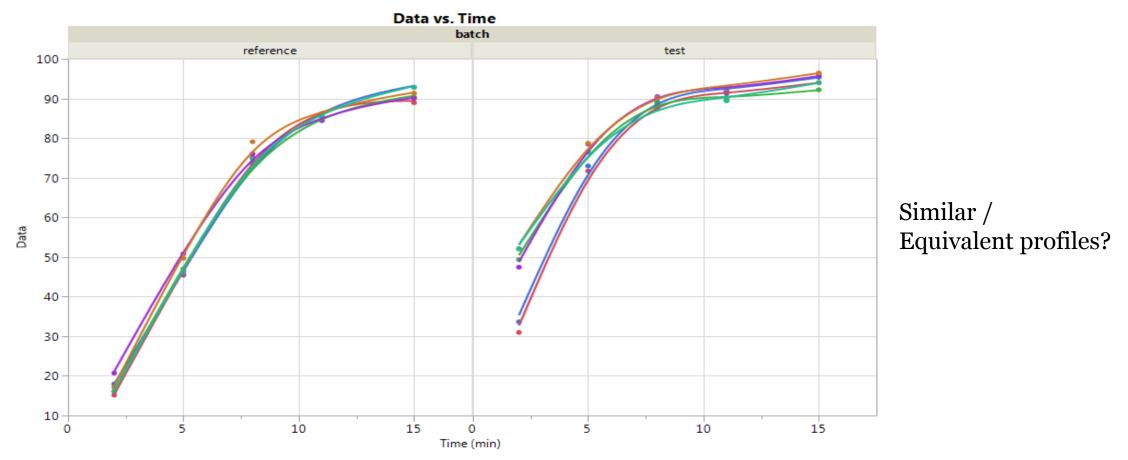
- 1 tablet (unit) / stirred vessel
- each vessel sampled at fixed time intervals
- samples assayed \rightarrow cumulative concentration
- expressed as % of dosage form Label Content

Time (h)	%LC / unit (tablet)					
	1	2	3	4	5	6
2	34	31	49	47	52	52
5	73	72	77	78	79	76
8	89	88	89	91	90	87
11	91	90	89	92	92	90
15	95	94	92	96	96	94



Multivariate testing of the Similarity of Dissolution Curves - comparing profiles

Show "equivalence" for product / process / site change to obtain a bio-waiver and avoid lengthy and costly bioavailability study



Multivariate Similarity Testing of Dissolution Curves - guidance

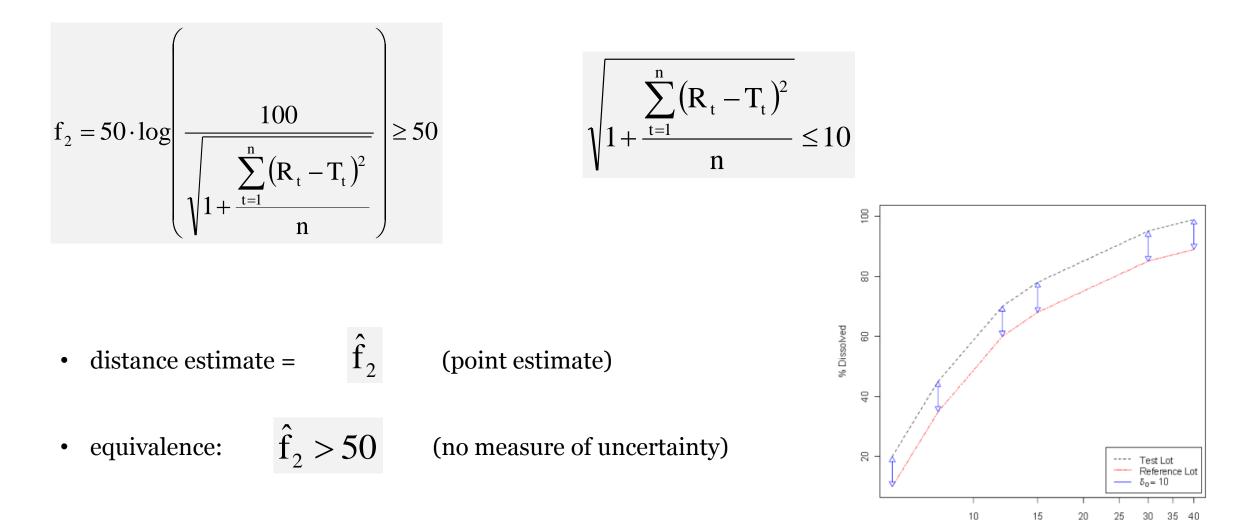
- guidance is given in papers from the EMA, FDA and other regulatory bodies, which show much resemblance but differ in the details
- similarity is preferably tested using the f_2 metric, with the following conditions
 - a minimum of 3 time-points (zero excluded)
 - time points should be the same for the two groups (formulations/processes/sites)
 - not more than one mean value >85% dissolved for any of the formulations
 - Coefficient of Variation (CV or RSD) of any product should be
 - less than 20% for the first point(s)
 - less than 10% for subsequent points
 - an f2 value > 50 suggests that the dissolution profiles are similar
- in case the variability is too high, a multivariate statistical distance (MSD) metric should be used, either
 - model dependent
 - model independent

Multivariate Similarity Testing of Dissolution Curves - example

0/ -1:	hand				Т	ime poin	t (h)				
%disso	ivea	02		05		08		11		15	
batch	tablet	Mean	C۷	Mean	C۷	Mean	с٧	Mean	с٧	Mean	с٧
reference	1	17.97		45.42		73.90		86.18		92.83	
	2	15.16		45.76		75.15		86.17		88.94	
	3	16.11		47.04		73.39		84.51		90.35	
	4	20.74		50.82		76.05		84.43		90.02	
	5	17.16		49.68		79.09		85.42		91.37	
	6	16.11		46.20		74.83		85.38		92.85	
	All	17.21	11.5	47.49	4.7	75.40	2.7	85.35	0.9	91.06	1.7
test	1	33.69		72.97		89.18		91.28		95.36	
	2	30.99		71.71		88.12		90.27		94.03	
	3	49.37		76.61		88.82		89.42		92.20	
	4	47.45		78.48		90.50		91.83		95.77	
	5	52.05		78.71		90.24		92.47		96.46	
	6	52.14		76.43		87.40		89.55		94.01	
	All	44.28	21.3	75.82	3.8	89.04	1.3	90.80	1.4	94.64	1.6

- exclude 15 h time-point (85% rule)
- 4 time-points left (>3)
- CV > 20% for 1st time-point
 - \rightarrow f₂ metric not allowed
 - \rightarrow use MSD metric

Multivariate Similarity Testing of Dissolution Curves - f2 metric approach



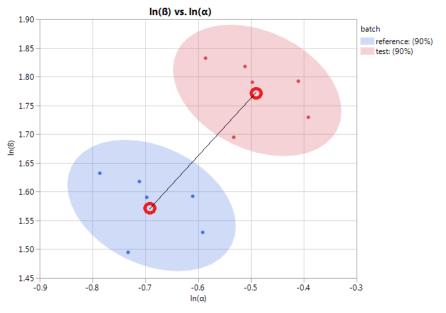
Time

Two groups of Univariate data

$$d = \frac{\overline{x}_1 - \overline{x}_2}{s_p}$$

Two groups of Multivariate data

$$\mathbf{D}^{2} = \left(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}\right)^{t} \hat{\boldsymbol{\Sigma}}^{-1} \left(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}\right)$$

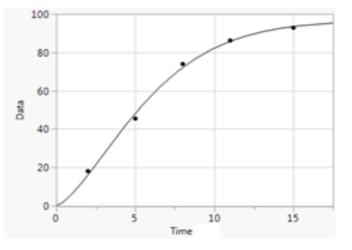


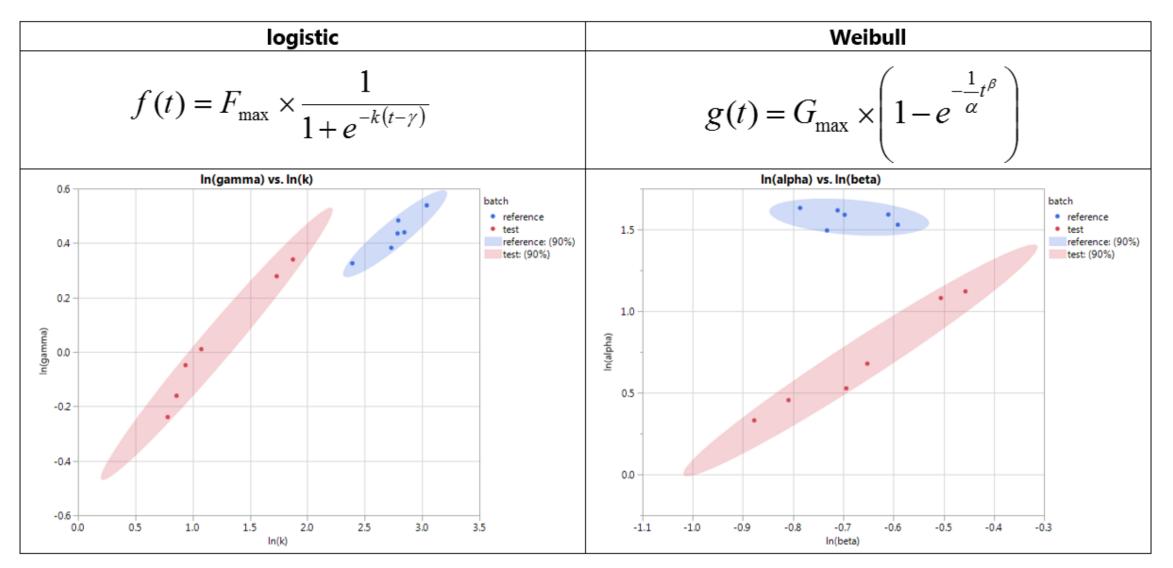
	σ_1^2	$ ho_{12}\sigma_1\sigma_2$	$ ho_{13}\sigma_1\sigma_3$	$ ho_{14}\sigma_1\sigma_4$	$ ho_{15}\sigma_1\sigma_5$
	$ ho_{12}\sigma_1\sigma_2$	σ_2^2	$ ho_{23}\sigma_2\sigma_3$	$ ho_{24}\sigma_2\sigma_4$	$ ho_{25}\sigma_2\sigma_5$
$\Sigma =$	$ ho_{13}\sigma_1\sigma_3$	$ ho_{23}\sigma_2\sigma_3$	σ_3^2	$ ho_{ m _{34}}\sigma_{ m _3}\sigma_{ m _4}$	$ ho_{35}\sigma_3\sigma_5$
	$ ho_{14}\sigma_1\sigma_4$	$ ho_{24}\sigma_2\sigma_4$	$ ho_{ m 34}\sigma_{ m 3}\sigma_{ m 4}$	σ_4^2	$ ho_{45}\sigma_4\sigma_5$
	$ ho_{15}\sigma_1\sigma_5$	$ ho_{25}\sigma_2\sigma_5$	$ ho_{35}\sigma_3\sigma_5$	$ ho_{45}\sigma_4\sigma_5$	σ_5^2

Mahalanobis distance

- not based on a (transformed) Euclidian distance
- depends on covariance structure of the data
- can be computed directly on the data (*model free approach*)
- can be computed on the parameters of a model fit to the data (*model based approach*)
 - for each unit (tablet) a pre-defined (non-linear) function is fit, e.g. a Weibull model
- for the fitted parameters, the MSD is calculated

$$g(t) = G_{\max} \times \left(1 - e^{-\frac{1}{\alpha}t^{\beta}}\right)$$





For a model free approach, acceptance limits can be formulated, based on

$$\frac{\left(n_{1}+n_{2}-p-1\right)}{\left(n_{1}+n_{2}-2\right)}\cdot\frac{n_{1}n_{2}}{\left(n_{1}+n_{2}\right)}\cdot D^{2} = \frac{\left(n_{1}+n_{2}-p-1\right)}{\left(n_{1}+n_{2}-2\right)}\cdot T^{2} \approx F_{p,n_{1}+n_{2}-p-1}(\lambda)$$

where D² represents the Mahalanobis distance, T² Hotelling's statistic and where one could correct for the non-centrality parameter λ , or not (i.e. $\lambda = 0$).

Using the confidence interval, one could decide on statistical significance, but we need to decide on practical relevant differences. Therefore, the following is proposed :

- $\lambda = 0$ The acceptance limit is D_{mc} computed as the Mahalanobis distance for a parallel shift of 10%. Similarity is concluded \Leftrightarrow 90%UCL(D_m) < D_{mc}
- $\lambda > 0$ A critical distance **d** is calculated based on simulations, **d** must be less than $d_0 = 6\%$

Standard functionality

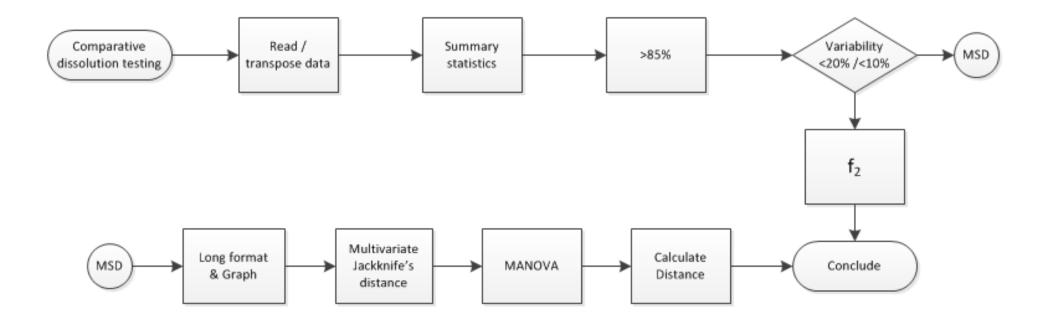
- Graph builder
- Outlier testing
- Non-linear curve fitting
- MANOVA

Extended functionality

- JSL script
 - Mahalanobis distance
 - Confidence intervals
 - Acceptance limits

Results		of test to reference.
Quantity	Value	or test to reference.
n1	6	
n2	6	
p	5	
k	0.36	
Dm	16.0346	
Dlower	13.0966	
Dupper	18.9727	
Dmc	10.5005	
d	8.30183	
f2	36.2792	

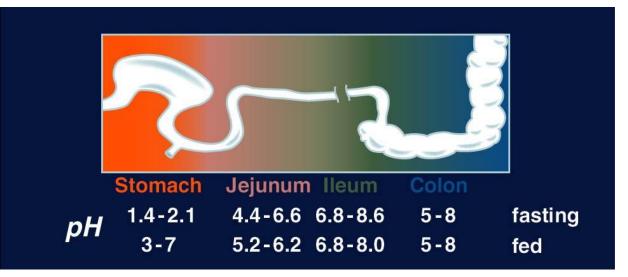
Multivariate Similarity Testing of Dissolution Curves - Workflow



Multivariate Similarity Testing of Dissolution Curves - Study design

More extensive studies are performed using

- 3 reference batches
- 3 test batches
- 4 dissolution media
 - pH 1.2
 - pH 4.5
 - pH 6.8
 - QC medium



MODEL FREE APPROACH JMP demo

Multivariate Similarity Testing of Dissolution Curves - Study design

Multiple batches complicate the application of the rules for

- just one time point >85%
- CV < 20%

Dissolu	tion sun	mary	t05		t10		t15		t20		t30	
Medium	Туре	Batch	Mean	C۷	Mean	C۷	Mean	C۷	Mean	с٧	Mean	C۷
pH 1.2	Ref	A1	15.9	38.0	37.9	31.0	70.9	16.3	87.8	7.1	96.0	2.6
		A2	9.8	29.7	20.6	18.0	31.8	11.5	46.6	9.7	93.0	4.2
		A3	10.8	41.2	21.8	27.6	35.0	17.3	51.4	15.5	92.2	3.9
	Tst	B1	10.1	28.2	27.2	6.6	48.6	11.2	66.8	9.8	95.0	4.2
		B2	10.2	37.2	22.3	17.8	37.4	19.1	53.8	14.9	93.0	4.3
		B3	11.0	43.9	24.0	35.8	37.8	22.1	50.1	22.8	90.5	5.8
pH 4.5	Ref	A1	32.5	38.1	62.9	27.8	90.7	8.0	96.7	2.5	98.1	1.5
		A2	17.6	22.4	32.4	27.3	50.0	19.5	81.5	11.7	97.3	4.3
		A3	17.3	28.1	36.5	26.9	56.9	23.6	85.9	11.5	96.3	5.3
	Tst	B1	19.2	12.2	39.3	9.9	71.7	13.5	90.4	5.1	95.1	4.8
		B2	12.6	13.3	27.8	17.3	45.2	18.2	71.0	14.2	93.6	4.7
		B3	13.6	28.5	28.7	22.3	43.3	19.4	71.4	15.4	95.7	2.6
pH 6.8	Ref	A1	34.8	24.0	73.8	18.0	96.0	3.9	98.4	2.4	99.2	1.7
		A2	17.3	30.8	29.9	23.7	46.5	27.4	75.1	21.7	97.9	4.5
		A3	28.3	38.6	43.8	30.1	67.0	25.0	87.7	12.3	98.3	3.0
	Tst	B1	18.8	37.7	41.3	28.9	69.3	17.8	88.8	6.6	93.7	6.0
		B2	16.2	30.2	30.8	22.5	47.5	18.9	78.1	10.2	94.3	4.8
		B3	13.7	25.4	27.8	24.4	43.0	25.7	63.3	19.6	92.3	6.5
QC	Ref	A1	14.3	20.7	32.8	20.8	65.0	16.0	87.3	7.1	96.9	2.9
		A2	8.2	20.1	19.2	12.2	30.8	8.6	51.5	18.3	97.8	2.7
		A3	10.5	55.6	24.3	41.9	39.9	28.2	54.5	18.5	95.3	2.7
	Tst	B1	10.8	51.6	27.5	26.7	44.1	18.2	66.3	15.8	93.0	3.1
		B2	13.3	25.7	27.6	25.7	42.8	19.2	58.3	13.0	95.5	3.2
		B3	9.7	31.0	21.8	22.0	35.4	14.1	51.7	12.6	92.8	4.7

f₂ bootstrapping

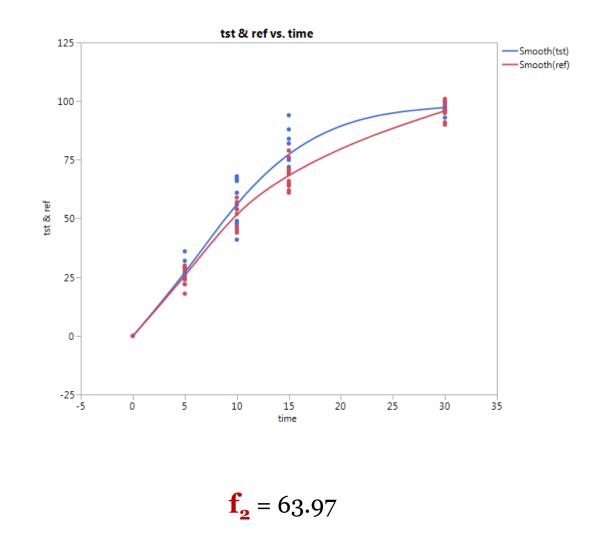
(and other approaches)

f₂: similarity metric, high RSD

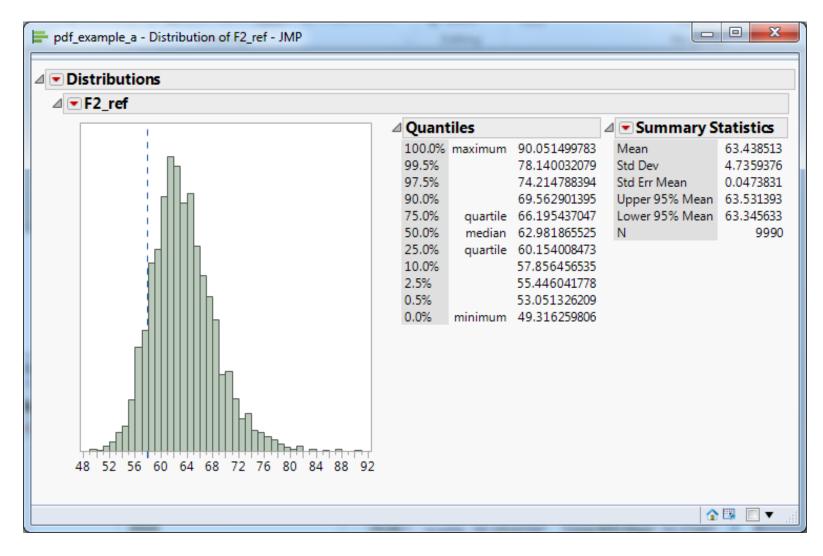
Bootstrapping: an alternative approach

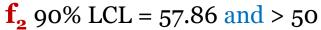
- Problem:
 - no PDF analytically tractable for $\mathbf{f_2}$, statistical inference not feasible
- Bootstrapping creates an empirical distribution for f_2
 - Measured data are re-sampled many times (≥ 5000) and
 - for each sample an $\mathbf{f_2}$ value is generated
 - Based on the empirical distribution a 90% LCL is obtained, where LCL > 50, similarity is concluded
- Feasible only when $f_2 >> 50$
- Implemented using SAS PROC SURVEYSELECT

tst		5	10	15	30
	1	22	41	64	96
	2	26	54	75	99
	3	36	68	94	97
	4	32	61	76	98
	5	24	49	72	100
	6	24	48	71	98
	7	24	54	82	96
	8	29	67	88	93
	9	29	66	82	96
	10	27	66	84	99
	11	22	46	69	96
	12	25	56	72	99
mean		26.7	56.3	77.4	97.3
RSD		15.8	16.4	11.2	2.0
ref		5	10	15	30
	1	27	59	76	100
	2	24	56	71	101
	3	27	57	69	98
	4	22	44	64	96
	5	29	56	70	96
	6	30	54	69	97
	7	29	52	65	95
	8	18	47	61	91
	9	30	59	79	97
	10	22	45	62	90
	11	28	52	66	95
	12	18	45	66	95
mean		25.3	52.2	68.2	95.9
RSD		17.4	10.7	7.9	3.3



f_2 : bootstrapping example





Comparison to other approaches for same data

•	Mahalanobis (λ = 0)	pass
•	Mahalonobis (λ > 0)	fail
•	IUT	pass
•	ΤΟST(δ)	pass
•	Bootstrap(f ₂)	pass

IUT = intersection union test

TOST = two-one sided t-interval

 δ = SK test statistic for parallel shift

"It is fair to say that measuring distances is a topic where a certain amount of arbitrariness seems unavoidable."

Bryan F.J. Manly, Multivariate Statistical Methods, A primer, 2nd Ed.

	comparisor	1 OF t	st to re
Quantity	Value		
n1	12		
n2	12		
р	4		
k	1.29545		
Dm	1.86304		
Dlower	0.54039		
Dupper	3.1857		
Dmc	4.22233		
d	12.9299		
f2	63.9695		

SK Results of co	mparison	of tst to ref
Quantity	Value	
f2	63.9695	
max IUT	3.65034	
tStat	8.15899	
max pvalue	5.35e-6	
delta hat	-1.5041	
standard error	1.40999	
TOST lower	-3.9422	
TOST upper	0.93396	

Multivariate Similarity Testing of Dissolution Curves - Conclusions

- Dissolution testing is an important aspect of pharmaceutical products in development and quality control
- Comparing dissolution curves is used to support changes (product, production, site)
- Multivariate statistical distance based metrics are used when the variability is too high
- Application is hampered by lack of guidance and regulatory acceptance therefore, different tools are needed
- JMP supports comparing dissolution curves by
 - standard functionality
 - extended functionality using dedicated JSL scripts

Thank you

- **Diane Michelson** (SAS) wrote a large part of the code, especially for the interface, helping us to make a fast start in JSL scripting
- Hadley Myers (JMP) motivated us to share this work
- Wim Oostra (Abbott, EPD) made valuable comments

Abbott

Multivariate Similarity Testing of Dissolution Curves

90% confidence region Mahalanobis distance, for $\lambda = 0$:

$$k \times ((y - (x_{test} - x_{ref}))^{t} \times S_{pooled}^{-1} \times (y - (x_{test} - x_{ref}))) \leq F_{p,n_{1}+n_{2}-p-1,0.90}$$

where

$$\mathbf{k} = \frac{\mathbf{n}_1 \mathbf{n}_2}{\mathbf{n}_1 + \mathbf{n}_2} \cdot \frac{\mathbf{n}_1 + \mathbf{n}_2 - \mathbf{p} - 1}{(\mathbf{n}_1 + \mathbf{n}_2 - 2) \times \mathbf{p}} = \frac{\mathbf{n}_1 \mathbf{n}_2}{\mathbf{n}_1 + \mathbf{n}_2} \cdot \mathbf{k}_2 = \mathbf{k}_1 \cdot \mathbf{k}_2$$

$$\Rightarrow \begin{cases} y_{1}^{*} = (x_{test} - x_{ref}) \left\{ 1 + \sqrt{\frac{F_{p,n_{1}+n_{2}-p-1,0.90}}{k(x_{test} - x_{ref})^{t} \times S_{pooled}^{-1} \times (x_{test} - x_{ref})} \right\} \\ y_{2}^{*} = (x_{test} - x_{ref}) \left\{ 1 - \sqrt{\frac{F_{p,n_{1}+n_{2}-p-1,0.90}}{k(x_{test} - x_{ref})^{t} \times S_{pooled}^{-1} \times (x_{test} - x_{ref})}} \right\} \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{D}_{\mathrm{M}}^{\mathrm{upper}} = \max\left(\sqrt{\left(\mathbf{y}_{1}^{*}\right)^{t}} \times \mathbf{S}_{\mathrm{pooled}}^{-1} \times \mathbf{y}_{1}^{*}, \sqrt{\left(\mathbf{y}_{2}^{*}\right)^{t}} \times \mathbf{S}_{\mathrm{pooled}}^{-1} \times \mathbf{y}_{2}^{*} \\ \mathbf{D}_{\mathrm{M}}^{\mathrm{lower}} = \min\left(\sqrt{\left(\mathbf{y}_{1}^{*}\right)^{t}} \times \mathbf{S}_{\mathrm{pooled}}^{-1} \times \mathbf{y}_{1}^{*}, \sqrt{\left(\mathbf{y}_{2}^{*}\right)^{t}} \times \mathbf{S}_{\mathrm{pooled}}^{-1} \times \mathbf{y}_{2}^{*} \end{cases} \right) \end{cases}$$

Abbott Established Pharmaceuticals

Multivariate Similarity Testing of Dissolution Curves

90% confidence region Mahalanobis distance, for $\lambda > 0$:

$$\mathbf{y} = \mathbf{k} \times \mathbf{D}^2 = \mathbf{k} \times \left(\left(\mathbf{x}_{\text{test}} - \mathbf{x}_{\text{ref}} \right)^t \times \mathbf{S}_{\text{pooled}}^{-1} \times \left(\mathbf{x}_{\text{test}} - \mathbf{x}_{\text{ref}} \right) \right) \approx F_{p, n_1 + n_2 - p - 1} \left(\lambda \right)$$

(where $\lambda = k_1 \delta^2$ and δ^2 = population mean of the Mahalanobis distance)

now using an iterative root finder for a monotonic function, find λ_0 for

y - $F_{p,n_1+n_2-p-1,0.90}(\lambda) = 0$ (JSL function 'F noncentrality')

then the critical distance **d** is obtained from

